On Moessner’s theorem

Dexter Kozen1 \quad Alexandra Silva2,3

1Cornell University, USA
2Radboud Universiteit Nijmegen, The Netherlands
3HasLab, Universidade do Minho, Portugal

QAIS workshop, October 2011
Moessner’s construction (n=4)

| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
|---|----|
| 1 | 1 | 1 | 1 | 1 | 2 | 2 | 3 | | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| 2 | 3 | 6 | 11 | 17 | 24 | 33 | 43 | 54 | 67 | 81 | 96 | 113| 131| 150| 171| 193| 216| 242| 271| 303| 337| 373| 411|
| 3 | 4 | 15 | 32 | 65 | 108| 175| 256| 369| 500| 625| 774| 946| 1131|1336|1561|1806|2071|2366|2690|3045|3423|3833|
| 4 | 16 | 81 | 256| 625|1296|256|512|1024|2048|4096|8192|16384|32768|65536|131072|262144|524288|1048576|2097152|4194304|8388608|16777216|

Moessner’s Conjecture/Theorem

Works for all $n \in \mathbb{N}$
Moessner’s construction (n=4)

Moessner’s Conjecture/Theorem
Works for all $n \in \mathbb{N}$
Moessner’s construction (n=4)

| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
|---|----|
| 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
| 2 | 1 | 3 | 6 | 11 | 17 | 24 | 33 | 43 | 54 | 67 | 81 | 96 | 113| 131| 150| 171| 193| 216|
| 3 | 1 | 4 | 15 | 32 | 65 | 108| 175| 256| 369| 500| 671| 864|
| 4 | 1 | 16 | 81 | 256| 625| 1296|

Moessner’s Conjecture/Theorem

Works for all $n \in \mathbb{N}$
Moessner’s construction (n=4)

\[\begin{array}{ccccccccccccccccccc}
1 & 16 & 81 & 256 & 625 & 1296 & 1681 & 2041 & 2449 & 2904 & 3396 & 3939 & 4521 & 5145 & 5805 & 6495 & 7215 & 7961 & 8735 & 9537 \\
1 & 2^4 & 3^4 & 4^4 & 5^4 & 6^4 \\
\end{array} \]

Moessner’s Conjecture/Theorem

Works for all \(n \in \mathbb{N} \)

Alexandra Silva (RUN)
Moessner’s construction (n=4)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>11</td>
<td>17</td>
<td>24</td>
<td>33</td>
<td>43</td>
<td>54</td>
<td>67</td>
<td>81</td>
<td>96</td>
<td>113</td>
<td>131</td>
<td>150</td>
<td>171</td>
<td>193</td>
<td>216</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>15</td>
<td>32</td>
<td>65</td>
<td>108</td>
<td>175</td>
<td>256</td>
<td>369</td>
<td>500</td>
<td>671</td>
<td>864</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>16</td>
<td>81</td>
<td>256</td>
<td>625</td>
<td>1296</td>
<td></td>
</tr>
</tbody>
</table>

Moessner’s Conjecture/Theorem
Works for all \(n \in \mathbb{N} \)

Alexandra Silva (RUN)
On Moessner’s theorem
QAIS 2 / 18
Moessner’s construction (n=4)

<p>| | | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>⬤</td>
<td>11</td>
<td>17</td>
<td>24</td>
<td>33</td>
<td>43</td>
<td>54</td>
<td>67</td>
<td>81</td>
<td>96</td>
<td>113</td>
<td>131</td>
<td>150</td>
<td>176</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td></td>
<td>15</td>
<td>32</td>
<td>65</td>
<td>108</td>
<td>175</td>
<td>256</td>
<td>369</td>
<td>500</td>
<td>671</td>
<td>864</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>16</td>
<td></td>
<td>81</td>
<td>256</td>
<td>625</td>
<td>1296</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$1^4, 2^4, 3^4, 4^4, 5^4, 6^4$

Moessner’s Conjecture/Theorem

Works for all $n \in \mathbb{N}$
History

1951 Moessner conjectures it

1952 Perron proves it

1952 Paasche and Salie generalize it

1966 Long presents and alternative proof (and generalizes it)

2010 Hinze, Rutten&Niqui present new proofs of Moessner’s theorem

2011 This talk: an uniform proof of all the theorems
1951 Moessner conjectures it

1952 Perron proves it

1952 Paasche and Salie generalize it

1966 Long presents an alternative proof (and generalizes it)

2010 Hinze, Rutten & Niqui present new proofs of Moessner’s theorem

2011 This talk: an uniform proof of all the theorems
History

1951 Moessner conjectures it

1952 Perron proves it

1952 Paasche and Salie generalize it

1966 Long presents and alternative proof (and generalizes it)

2010 Hinze, Rutten&Niqui present new proofs of Moessner’s theorem

2011 This talk: an uniform proof of all the theorems
Paasche asked: what if we cross out 1, 3, 6, 10, ...?

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>11</td>
<td>24</td>
<td>66</td>
<td>18</td>
<td>26</td>
<td>35</td>
<td>46</td>
<td>58</td>
<td>71</td>
<td>85</td>
<td>101</td>
<td>118</td>
<td>136</td>
<td>155</td>
<td>175</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>6</td>
<td>24</td>
<td>50</td>
<td>120</td>
<td>274</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>24</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>46</td>
<td>71</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td></td>
<td>58</td>
<td>71</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td></td>
<td>71</td>
<td>85</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>85</td>
<td>101</td>
<td>118</td>
<td></td>
</tr>
<tr>
<td></td>
<td>101</td>
<td>118</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td></td>
<td>118</td>
<td>136</td>
<td>155</td>
<td></td>
</tr>
<tr>
<td></td>
<td>136</td>
<td>155</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td></td>
<td>155</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td></td>
<td>175</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

We get the factorials: 1, 2, 6, 24, 120, ... = 1!, 2!, 3!, 4!, 5!,
Paasche asked: what if we cross out 1, 3, 6, 10, ...?

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>11</td>
<td>18</td>
<td>26</td>
<td>35</td>
<td>46</td>
<td>58</td>
<td>71</td>
<td>85</td>
<td>101</td>
<td>118</td>
<td>136</td>
<td>155</td>
<td>175</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>6</td>
<td>11</td>
<td>18</td>
<td>26</td>
<td>35</td>
<td>46</td>
<td>58</td>
<td>71</td>
<td>85</td>
<td>101</td>
<td>118</td>
<td>136</td>
<td>155</td>
<td>175</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>6</td>
<td>11</td>
<td>18</td>
<td>26</td>
<td>35</td>
<td>46</td>
<td>58</td>
<td>71</td>
<td>85</td>
<td>101</td>
<td>118</td>
<td>136</td>
<td>155</td>
<td>175</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>6</td>
<td>11</td>
<td>18</td>
<td>26</td>
<td>35</td>
<td>46</td>
<td>58</td>
<td>71</td>
<td>85</td>
<td>101</td>
<td>118</td>
<td>136</td>
<td>155</td>
<td>175</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>6</td>
<td>11</td>
<td>18</td>
<td>26</td>
<td>35</td>
<td>46</td>
<td>58</td>
<td>71</td>
<td>85</td>
<td>101</td>
<td>118</td>
<td>136</td>
<td>155</td>
<td>175</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We get the factorials: 1, 2, 6, 24, 120, ... = 1!, 2!, 3!, 4!, 5!, ...
Paasche asked: what if we cross out 1, 3, 6, 10, . . .?

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>6</td>
<td>11</td>
<td>18</td>
<td>26</td>
<td>35</td>
<td>46</td>
<td>58</td>
<td>71</td>
<td>85</td>
<td>101</td>
<td>118</td>
<td>136</td>
<td>155</td>
<td>175</td>
<td>196</td>
<td>218</td>
<td>241</td>
<td>265</td>
<td>290</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>11</td>
<td>18</td>
<td>26</td>
<td>35</td>
<td>46</td>
<td>58</td>
<td>71</td>
<td>85</td>
<td>101</td>
<td>118</td>
<td>136</td>
<td>155</td>
<td>175</td>
<td>196</td>
<td>218</td>
<td>241</td>
<td>265</td>
<td>290</td>
<td>316</td>
</tr>
<tr>
<td>6</td>
<td>24</td>
<td>50</td>
<td>96</td>
<td>154</td>
<td>225</td>
<td>304</td>
<td>402</td>
<td>519</td>
<td>655</td>
<td>815</td>
<td>991</td>
<td>1183</td>
<td>1400</td>
<td>1636</td>
<td>1894</td>
<td>2173</td>
<td>2474</td>
<td>2806</td>
<td>3160</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>120</td>
<td>274</td>
<td>600</td>
<td>1044</td>
<td>1624</td>
<td>2496</td>
<td>3704</td>
<td>5202</td>
<td>6990</td>
<td>9096</td>
<td>11484</td>
<td>14280</td>
<td>17520</td>
<td>21240</td>
<td>25500</td>
<td>30390</td>
<td>35820</td>
<td>41860</td>
<td>48420</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>720</td>
<td>1764</td>
<td>720</td>
<td></td>
</tr>
</tbody>
</table>

We get the factorials: 1, 2, 6, 24, 120, . . . = 1!, 2!, 3!, 4!, 5!,
And the magic continues...

What if we increment the increment by one in each step?

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5</td>
<td>10</td>
<td>16</td>
<td>23</td>
<td>31</td>
<td>40</td>
<td>51</td>
<td>63</td>
<td>76</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>28</td>
<td>51</td>
<td>82</td>
<td>133</td>
<td>196</td>
<td>272</td>
<td>352</td>
<td>451</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>40</td>
<td>91</td>
<td>276</td>
<td>696</td>
<td>288</td>
<td>984</td>
<td>288</td>
<td>288</td>
</tr>
<tr>
<td>12</td>
<td>52</td>
<td>288</td>
<td>1272</td>
<td>288</td>
<td>288</td>
<td>288</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What is the sequence

1, 2, 12, 288, ... ?

It’s the superfactorials!

1, 2, 12, 288, ... = 1!, 2!1!, 3!2!1!, 4!3!2!1!, ... = 1!!, 2!!, 3!!, 4!!, ...
And the magic continues...

What if we increment the increment by one in each step?

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5</td>
<td>10</td>
<td>16</td>
<td>23</td>
<td>31</td>
<td>40</td>
<td>51</td>
<td>63</td>
<td>76</td>
<td>80</td>
<td>95</td>
<td>100</td>
<td>116</td>
<td>133</td>
<td>156</td>
<td>180</td>
<td>205</td>
<td>232</td>
<td>260</td>
</tr>
</tbody>
</table>

What is the sequence 1, 2, 12, 288, ...?

It’s the superfactorials!

1, 2, 12, 288, ... = 1!, 2!1!, 3!2!1!, 4!3!2!1!, ... = 1!!, 2!!, 3!!, 4!!, ...
And the magic continues...

What if we increment the increment by one in each step?

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5</td>
<td>10</td>
<td>16</td>
<td>23</td>
<td>31</td>
<td>40</td>
<td>51</td>
<td>63</td>
<td>76</td>
<td>80</td>
<td>95</td>
<td>109</td>
<td>123</td>
<td>139</td>
<td>156</td>
<td>174</td>
<td>193</td>
<td>213</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>28</td>
<td>51</td>
<td>82</td>
<td>133</td>
<td>196</td>
<td>272</td>
<td>352</td>
<td>442</td>
<td>548</td>
<td>664</td>
<td>793</td>
<td>935</td>
<td>1092</td>
<td>1264</td>
<td>1452</td>
<td>1656</td>
<td>1876</td>
<td>2112</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>40</td>
<td>91</td>
<td>224</td>
<td>420</td>
<td>692</td>
<td>990</td>
<td>1308</td>
<td>1746</td>
<td>2212</td>
<td>2708</td>
<td>3236</td>
<td>3804</td>
<td>4416</td>
<td>5072</td>
<td>5772</td>
<td>6516</td>
<td>7304</td>
<td>8140</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>52</td>
<td>276</td>
<td>696</td>
<td>1334</td>
<td>2776</td>
<td>5556</td>
<td>11116</td>
<td>22232</td>
<td>44464</td>
<td>88928</td>
<td>177856</td>
<td>355712</td>
<td>711424</td>
<td>1422848</td>
<td>2845696</td>
<td>5691392</td>
<td>11382784</td>
<td>22765568</td>
<td></td>
</tr>
</tbody>
</table>

What is the sequence

1, 2, 12, 288, ...?

It's the superfactorials!

1, 2, 12, 288, ... = 1!, 2!1!, 3!2!1!, 4!3!2!1!, ... = 1!!, 2!!, 3!!!, 4!!!, ...
And the magic continues...

What if we increment the increment by one in each step?

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ...
2 5 10 16 23 31 40 51 63 76 80 95 ...
2 13 12 28 51 82 103 133 196 272 352 ...
2 12 40 91 224 420 692 ...
2 12 52 276 696 ...
2 12 288 984 ...
288 ...
288 ...
288 ...
288 ...
288 ...
288 ...

What is the sequence

1, 2, 12, 288, ...?

It’s the superfactorials!

1, 2, 12, 288, ... = 1!, 2!1!, 3!2!1!, 4!3!2!1!, ... = 1!!, 2!!, 3!!, 4!!,
An alternative procedure

Long's observation
First triangle: Pascal triangle; all have Pascal property

Long's procedure
starting point: Pascal triangle
next step: consider the nth northeast-to-southwest row. Take prefix sums and make that the first column, and let the first row be a sequence of 1’s. Complete the triangle using the Pascal property.
An alternative procedure

Long’s observation
First triangle: Pascal triangle; all have Pascal property

Long’s procedure
starting point: Pascal triangle
next step: consider the \(n \)th northeast-to-southwest row. Take prefix sums and make that the first column, and let the first row be a sequence of 1’s. Complete the triangle using the Pascal property.
Long’s observation

First triangle: Pascal triangle; all have Pascal property

Long’s procedure

starting point: Pascal triangle
next step: consider the \(n \)th northeast-to-southwest row. Take prefix sums and make that the first column, and let the first row be a sequence of 1’s. Complete the triangle using the Pascal property.
An alternative procedure

Long’s observation
First triangle: Pascal triangle; all have Pascal property

Long’s procedure
starting point: Pascal triangle
next step: consider the \(n \)th northeast-to-southwest row. Take prefix sums and make that the first column, and let the first row be a sequence of 1’s. Complete the triangle using the Pascal property.
Yet another generalization (Long & Salie)

What if instead of the natural numbers we start with

\[a, a+d, a+2d, a+3d, a+4d, a+5d, a+6d, a+7d, a+8d, a+9d, a+10d, a+11d, \ldots \]

\[a, a+d, a+2d, a+3d, a+4d, a+5d, a+6d, a+7d, a+8d, a+9d, a+10d, a+11d, \ldots \]

Given \(n \in \mathbb{N} \), the Moessner construction yields

\[a \cdot 1^{n-1}, (a + d) \cdot 2^{n-1}, (a + 2d) \cdot 3^{n-1}, \ldots \]

when starting from the sequence \(a, a + d, a + 2d, \ldots \)
Yet another generalization (Long & Salie)

What if instead of the natural numbers we start with

\[a \quad a+d \quad a+2d \quad a+3d \quad a+4d \quad a+5d \quad a+6d \quad a+7d \quad a+8d \quad a+9d \quad a+10d \quad a+11d \]

\[a \quad a+d \quad a+2d \quad a+3d \quad a+4d \quad a+5d \quad a+6d \quad a+7d \quad a+8d \quad a+9d \quad a+10d \quad a+11d \]

\[a \quad 2a+d \quad 3a+3d \quad 4a+7d \quad 5a+12d \quad 6a+18d \quad 7a+26d \quad 8a+35d \quad 9a+45d \]

\[a \quad 3a+d \quad 7a+8d \quad 12a+20d \quad 19a+46d \quad 27a+81d \]

\[a \quad 8a+8d \quad 27a+54d \]

\[a \quad (a+d) \cdot 8 \quad (a+2d) \cdot 27 \]

Given \(n \in \mathbb{N} \), the Moessner construction yields

\[a \cdot 1^{n-1}, (a + d) \cdot 2^{n-1}, (a + 2d) \cdot 3^{n-1}, \ldots \]

when starting from the sequence \(a, a + d, a + 2d, \ldots \)
Yet another generalization (Long & Salie)

What if instead of the natural numbers we start with

\[
a, a+d, a+2d, a+3d, a+4d, a+5d, a+6d, a+7d, a+8d, a+9d, a+10d, a+11d, \ldots
\]

\[
a, a+d, a+2d, a+3d, a+4d, a+5d, a+6d, a+7d, a+8d, a+9d, a+10d, a+11d, \ldots
\]

\[
a, 2a+d, 3a+3d, 4a+7d, 5a+12d, 6a+18d, 7a+26d, 8a+35d, 9a+45d, \ldots
\]

\[
a, 3a+d, 7a+8d, 12a+20d, 19a+46d, 27a+81d, \ldots
\]

\[
a, 8a+8d, 27a+54d, \ldots
\]

\[
(a+d) \cdot 8, (a+2d) \cdot 27
\]

Given \(n \in \mathbb{N} \), the Moessner construction yields

\[
a \cdot 1^{n-1}, (a + d) \cdot 2^{n-1}, (a + 2d) \cdot 3^{n-1}, \ldots
\]

when starting from the sequence \(a, a + d, a + 2d, \ldots \)
Proofs

- The proofs of Perron, Paasche, Long and Salie all have in common the manipulation of binomial coefficients.
- Hinze’s proof (2010) involves calculations scans (FP).
- Rutten’s proof is coinductive.
- Not obvious if the last two can be generalized.
Our view on Moessner’s theorem

- we take Long’s triangle view
- we describe the process as operations on formal power series on two variables
- this yields a proof of Moessner’s theorem and its generalizations all at once!
Our view on Moessner’s theorem

- we take Long’s triangle view
- we describe the process as operations on formal power series on two variables
- this yields a proof of Moessner’s theorem and its generalizations all at once!
Our view on Moessner’s theorem

- we take Long’s triangle view
- we describe the process as operations on formal power series on \textbf{two} variables
- this yields a proof of Moesser’s theorem and its generalizations all at once!
The Pascal triangle $\Delta = \Delta(x, y)$ is

$$\Delta(x, y) = \frac{1}{1 - (x + y)} = \sum_{m=0}^{\infty} (x + y)^m = \sum_{i,j} \binom{i + j}{i} x^i y^j. \quad (1)$$
Moessner’s construction, algebraically

The “nth northeast-to-southwest row” of $p \in \mathbb{Z}(x, y)$ is the homogeneous component of degree n, denoted $[p]_n$.

The operation of “taking prefix sums” is multiplying by $\frac{1}{1-x} = \sum_{i=0}^{\infty} x^i$.
Sequences of triangles

Each successive level-n Moessner triangle is obtained from the previous by taking the homogeneous component of degree n, evaluating at $y = 1$, and multiplying by Δ.

We define inductively

$$h_0(x, y) = 1 \quad h_{k+1}(x, y) = [h_k(x, 1) \cdot \Delta(x, y)]_n,$$

then the kth level-n Moessner triangle is $h_k(x, 1) \cdot \Delta$ and the final sequence in the Moessner construction is the lead coefficient of $h_k(x, 1)$ for $k = 1, 2, 3, \ldots$.
Instead of $h_0(x, y) = 1$, we can take $h_0 \in \mathbb{Z}[x, y]$ arbitrary (Salie’s generalization).

For Paasche’s construction we need to take homogeneous components not of a fixed n but of an arbitrary increasing sequence.

Let $d(0), d(1), d(2), \ldots$ of nonnegative integers and $n(k) = \sum_{i=0}^{k} d(i)$. The $n(k)$’s are the positions one should delete.

For Moessner

\[
\begin{array}{cccccc}
 d(0) & d(1) & d(2) & d(3) & \cdots \\
 n & 0 & 0 & 0 & \cdots \\
 n & n & n & n & \cdots \\
 n(0) & n(1) & n(2) & n(3) & \cdots \\
\end{array}
\]
Sequence of triangles generalized

Instead of $h_0(x, y) = 1$, we can take $h_0 \in \mathbb{Z}[x, y]$ arbitrary (Salie’s generalization).

For Paasche’s construction we need to take homogeneous components not of a fixed n but of an arbitrary increasing sequence.

Let $d(0), d(1), d(2), \ldots$ of nonnegative integers and $n(k) = \sum_{i=0}^{k} d(i)$. The $n(k)$’s are the positions one should delete.

For Moessner

\[
\begin{array}{cccccc}
 d(0) & d(1) & d(2) & d(3) & \cdots \\
 n & 0 & 0 & 0 & \cdots \\
 n & n & n & n & \cdots \\
 n(0) & n(1) & n(2) & n(3) & \cdots \\
\end{array}
\]
Sequence of triangles generalized

Instead of $h_0(x, y) = 1$, we can take $h_0 \in \mathbb{Z}[x, y]$ arbitrary (Salie’s generalization).

For Paasche’s construction we need to take homogeneous components not of a fixed n but of an arbitrary increasing sequence.

Let $d(0), d(1), d(2), \ldots$ of nonnegative integers and $n(k) = \sum_{i=0}^{k} d(i)$. The $n(k)$’s are the positions one should delete.

For Moessner

\[
\begin{array}{cccccc}
 d(0) & d(1) & d(2) & d(3) & \cdots \\
 n & 0 & 0 & 0 & \cdots \\
 n & n & n & n & \cdots \\
 n(0) & n(1) & n(2) & n(3) & \cdots \\
\end{array}
\]
Instead of $h_0(x, y) = 1$, we can take $h_0 \in \mathbb{Z}[x, y]$ arbitrary (Salie’s generalization).

For Paasche’s construction we need to take homogeneous components not of a fixed n but of an arbitrary increasing sequence.

Let $d(0), d(1), d(2), \ldots$ of nonnegative integers and $n(k) = \sum_{i=0}^{k} d(i)$. The $n(k)$’s are the positions one should delete.

For Moessner

\[
\begin{array}{cccccc}
d(0) & d(1) & d(2) & d(3) & \cdots \\
n & 0 & 0 & 0 & \cdots \\
n & n & n & n & n & \cdots \\
n(0) & n(1) & n(2) & n(3) & \cdots \\
\end{array}
\]
Define inductively

\[h_{k+1}(x, y) = [h_k(x, 1) \cdot \Delta(x, y)]_{n(k+1)}. \] (2)

The Moessner construction is the special case \(h_0 = 1, \) \(d(0) = n, \) and \(d(i) = 0 \) for \(i \geq 1. \)
Main theorem

Theorem

Let \(h_k \) be the sequence defined by (2). For all \(k \geq 0 \),

\[
h_k(x, y) = \prod_{i=0}^{k-1} ((k - i)x + y)^{d(i)} \cdot h_0(x, kx + y).
\]
Paasche’s, Long’s, and Moessner’s theorems are now immediate consequences of Theorem 1.

Corollary (Moessner’s Theorem)

If \(h_0 = 1 \), \(d(0) = n \), and \(d(k) = 0 \) for \(k \geq 1 \), then the lead coefficient of \(h_k(x, 1) \) is \(k^n \) for all \(k \geq 1 \).
Paasche’s, Long’s, and Moessner’s theorems are now immediate consequences of Theorem 1.

Corollary (Long’s Theorem)

If $h_0 = (a - d)x + dy$, $d(0) = n - 1$, and $d(k) = 0$ for $k \geq 1$, then the lead coefficient of $h_k(x, 1)$ is $(a + (k - 1)d)k^{n-1}$ for all $k \geq 1$.
Paasche’s, Long’s, and Moessner’s theorems are now immediate consequences of Theorem 1.

Corollary (Paasche’s Theorem)

For $h_0 = 1$ and any sequence d, the lead coefficient of $h_k(x, 1)$ is

$$
\prod_{i=0}^{k-1} (k - i)^{d(i)}
$$

for all $k \geq 0$. In particular, the sequences $d = 1, 1, 1, \ldots$ and $d = 1, 2, 3, \ldots$ yield the factorials and superfactorials, respectively.
Conclusions

- First proof that covers all the generalizations
- Proofs have a striking simplicity (no binomial coefficient manipulations!)
- Opens the door to new Moessner-like theorems (multidimensional generalization).
Conclusions

- First proof that covers all the generalizations
- Proofs have a striking simplicity (no binomial coefficient manipulations!)
- Opens the door to new Moessner-like theorems (multidimensional generalization).
Conclusions

- First proof that covers all the generalizations
- Proofs have a striking simplicity (no binomial coefficient manipulations!)
- Opens the door to new Moessner-like theorems (multidimensional generalization).
Thank you for your attention!