CoCaml: Programming with Coinductive Types

Jean-Baptiste Jeannin* Dexter Kozen* Alexandra Silva†

* Cornell University
† Radboud University of Nijmegen and Centrum Wiskunde & Informatica

Computer Science Seminar, University of Leicester
November 30, 2012
• Inductive datatypes and functions on those are well-understood; coinductive datatypes often considered difficult to handle, not many programming languages offer the constructs for them.
• OCaml offers the possibility of defining coinductive datatypes, but the means to define recursive functions on them are limited.
• Often the obvious definitions do not halt or provide the wrong solution.
• Even so, there are often perfectly good solutions (examples forthcoming!)
• We show how to extend the language to allow it!
Motivating example

definition of list type

let rec ones = C(1, ones);; 1,1,1,1,...
let rec alt = C(1, C(2, alt));; 1,2,1,2,...
Motivating example

```
type list = N | C of int * list

let rec ones = C(1, ones);; 1,1,1,1,...
let rec alt = C(1, C(2, alt));; 1,2,1,2,...
```

Infinite lists but...regular:

```
1
\[ \rightarrow \]
\[ \rightarrow \]
\[ \rightarrow \]
\[ \rightarrow \]
2
```

A simple function:
```
let set l = match l with
| N -> N
| C(h, t) -> (insert h (set t));;
```

We expect `set ones = \{1\}` and `set alt = \{1,2\}`.
motivating example

type list = N | C of int * list

let rec ones = C(1, ones);; 1,1,1,1,...
let rec alt = C(1, C(2, alt));; 1,2,1,2,...

infinite lists but... regular:

A simple function:

let set l = match l with
| N -> N
| C(h, t) -> (insert h (set t));;

we expect set ones = \{1\} and set alt = \{1,2\}.
What is the problem?

- The function definition above will not halt in OCaml...
- even though it is clear what the answer should be;
• The function definition above will not halt in OCaml...
• even though it is clear what the answer should be;
• Note that this is not a corecursive definition: we are not asking for a
greatest solution or a unique solution in a final coalgebra,
• but rather a least solution in a different ordered domain from the
one provided by the standard semantics of recursive functions.
• Standard semantics: least solution in the flat Scott domain with
bottom element \(\bot \) representing nontermination
• Intended semantics: least solution in a different CPO, namely
\((P(\mathbb{Z}), \subseteq) \) with bottom element \(\emptyset \).
We would like to use (almost) the same definition and get the intended solution...

```ocaml
let set l = match l with
| N -> N
| C(h, t) -> (insert h (set t));;
```

The construct `corec iterator(N)` specifies to the compiler how to solve equations.
We would like to use (almost) the same definition and get the intended solution...

```ocaml
let set l = match l with
  | N -> N
  | C(h, t) -> (insert h (set t));;
```

We change it to:

```ocaml
let corec[iterator(N)] set l = match l with
  | N -> N
  | C(h, t) -> insert h (set t);;
```

The construct `corec` with the parameter `iterator(N)` specifies to the compiler how to solve equations.
For instance, for the infinite list \(alt \):

\[
\begin{align*}
\text{set}(x) &= \text{insert } 1 \ (\text{set}(y)) \\
\text{set}(y) &= \text{insert } 2 \ (\text{set}(x))
\end{align*}
\]

then solve them using \text{iterator} (least fixed point) which will produce the intended set \(\{1, 2\} \).
let map f = match arg with
| N -> N
| C(h, t) -> C(f(h), map(f,t));;

We would like: `map plusOne alt` to produce the infinite list `2, 3, 2, 3, . . .`:

This is not a least fixed point computation anymore but rather a solution in the final coalgebra.
Free variables of a λ-term

type term =
 | Var of string x
 | App of term * term $(f \ e)$
 | Lam of string * term $\lambda x.e$

let rec fv = function
 | Var v -> {v}
 | App(t1,t2) -> fv t1 \cup fv t2
 | Lam(x,t) -> (fv t) - {x}
Another Example

But what about infinitary λ-terms (λ-coterms)?

type term =
 | Var of string x
 | App of term * term $(f\ e)$
 | Lam of string * term $\lambda x.e$

let rec fv = function
 | Var v -> \{v\}
 | App(t1,t2) -> fv t1 \cup fv t2
 | Lam(x,t) -> (fv t) $-\{x\}$

let rec t = App(Var "x", App(Var "y", t))

We would like: $fv\ t = \{x,y\}$ (again LFP).
Substitution

Replace y by x in $x \cdot x \cdot y$ to get $x \cdot x \cdot x \cdot x$.

The usual semantics would infinitely unfold the term on the left, generating instead:
\[\Pr_H(s) = \frac{1}{2} + \frac{1}{8} + \frac{1}{32} + \frac{1}{128} + \cdots = \frac{2}{3} \]
\[\Pr_H(t) = \frac{1}{4} + \frac{1}{16} + \frac{1}{64} + \frac{1}{256} + \cdots = \frac{1}{3} \]
\[
\Pr_H(s) = \frac{1}{2} + \frac{1}{2} \cdot \Pr_H(t) \\
\Pr_H(t) = \frac{1}{2} \cdot \Pr_H(s)
\]
The Von Neumann Trick

\[
\begin{align*}
Pr_H(s) &= p \cdot Pr_H(u) + (1 - p) \cdot Pr_H(t) \\
Pr_H(u) &= (1 - p) + p \cdot Pr_H(s) \\
Pr_H(t) &= (1 - p) \cdot Pr_H(s)
\end{align*}
\]
The Von Neumann Trick

type state =
 | H
 | T
 | Flip of float * state * state

let rec pr_heads s = function
 | H -> 1.
 | T -> 0.
 | Flip(p,u,v) ->
 p *. (pr_heads u) +. (1 -. p) *. (pr_heads v)

let rec s = Flip(.345,u,t)
and u = Flip(.345,H,s)
and t = Flip(.345,T,s)

print p_heads s
Theoretical Foundations

- Well-founded coalgebras [Taylor 99]
- Recursive coalgebras [Adámek, Lücke, Milius 07]
- Elgot algebras [Adámek, Milius, Velebil 06]
- Corecursive algebras [Capretta, Uustalu, Vene 09]

Ingredients:
- Functor F (usually polynomial or power set)
- domain: an F-coalgebra (C, γ)
- range: an F-algebra (A, α)

\[
\begin{array}{ccc}
C & \xrightarrow{h} & A \\
\downarrow{\gamma} & & \uparrow{\alpha} \\
FC & \xrightarrow{Fh} & FA \\
\end{array}
\]
Example: Factorial

let rec factorial = function
| 0 -> 1
| n -> n * factorial (n-1)

\[
\begin{align*}
\mathbb{N} & \xrightarrow{h} \mathbb{N} \\
\gamma & \downarrow \hspace{1cm} \alpha \\
1 + \mathbb{N} \times \mathbb{N} & \xrightarrow{id_1 + id_\mathbb{N} \times h} 1 + \mathbb{N} \times \mathbb{N}
\end{align*}
\]

\[
FX = 1 + \mathbb{N} \times X
\]

\[
\begin{align*}
\gamma(0) &= \nu_0() \\
\gamma(n + 1) &= \nu_1(n + 1, n) \\
\alpha(\nu_0()) &= 1 \\
\alpha(\nu_1(n, m)) &= nm
\end{align*}
\]
Example: Fibonacci

```
let rec fibonacci = function
| 0 -> 0
| 1 -> 1
| n -> fibonacci (n-1) + fibonacci (n-2)
```

\[
\begin{array}{c}
\mathbb{N} \quad h \\
\downarrow \gamma \quad \uparrow \alpha \\
1 + 1 + \mathbb{N} \times \mathbb{N} \\ id_1 + id_1 + h \times h \\
1 + 1 + \mathbb{N} \times \mathbb{N}
\end{array}
\]

\[
FX = 1 + 1 + X \times X \\
\gamma(0) = \iota_0() \quad \alpha(\iota_0()) = 0 \\
\gamma(1) = \iota_1() \quad \alpha(\iota_1()) = 1 \\
\gamma(n + 2) = \iota_2(n + 1, n) \quad \alpha(\iota_2(n, m)) = n + m
\]
let rec partition pivot = function
 | [] -> [], []
 | hd :: tl ->
 let leq, gt = partition pivot tl in
 if hd <= pivot then hd :: leq, gt
 else leq, hd :: gt

let rec quicksort = function
 | [] -> []
 | pivot :: tl ->
 let leq, gt = partition pivot tl in
 (quicksort leq) @ (pivot :: (quicksort gt))
Example: Quicksort

\[[\text{Adámek et al. 07}] \]

\[
\begin{align*}
A^* \xrightarrow{h} A^* \\
\downarrow \gamma & & \downarrow \alpha \\
\mathbb{1} + A^* \times A \times A^* \xrightarrow{id_\mathbb{1} + h \times id_A \times h} \mathbb{1} + A^* \times A \times A^*
\end{align*}
\]

\[
FX = \mathbb{1} + X \times A \times X
\]

\[
\begin{align*}
\gamma([\] &= \iota_0() \\
\gamma(\text{pivot :: tl}) &= \iota_1(\text{tl} \leq_{\text{pivot}}, \text{pivot}, \text{tl} >_{\text{pivot}}) \\
\alpha(\iota_0()) &= [] \\
\alpha(\iota_1(\text{stl} \leq_{\text{pivot}}, \text{pivot}, \text{stl} >_{\text{pivot}})) &= \text{stl} \leq_{\text{pivot}} \odot (\text{pivot :: stl} >_{\text{pivot}})
\end{align*}
\]
What about Non-Well-Founded Coalgebras?

The foundations existing so far were for unique solutions; we want alternative solutions.
What about Non-Well-Founded Coalgebras?

The foundations existing so far were for unique solutions; we want alternative solutions.

\[
\begin{array}{c}
C \\ \downarrow \gamma \\ FC \\
\end{array}
\xrightarrow{h}
\begin{array}{c}
A \\ \uparrow \alpha \\ FA \\
\end{array}
\]

- Even if \((C, \gamma)\) is not well-founded, the diagram may still have a canonical solution, provided \((A, \alpha)\) comes equipped with a method for solving systems of equations.
- The diagram specifies the system to be solved.
- The variables are the elements of \(C\) and \(h\) is their interpretation in \(A\).
- The system is finite if \(C\) is
The general idea

The programmer specifies the equations as usual with an extra parameter, like in:

```ocaml
let corec[iterator(N)] set l = match l with
  | N -> N
  | C(h, t) -> insert h (set t);
```

The general idea

The programmer specifies the equations as usual with an extra parameter, like in:

```ml
let corec[iterator(N)] set l = match l with
| N -> N
| C(h, t) -> insert h (set t);;
```

The compiler generates equations and solves them using the extra parameter.
The free variables of a \(\lambda \)-Coterm are \(\{x, y\} \).
The free variables of s are $\{x, y\}$

$fv(s) = fv(u) \cup fv(t)$

$fv(t) = fv(v) \cup fv(s)$

$fv(u) = \{x\}$

$fv(v) = \{y\}$

The least solution in $(\mathcal{P}(\text{Var}), \subseteq)$ is $\{x, y\}$

Standard semantics: $A \cup \bot = \bot$, whereas here $A \cup \emptyset = A$
let corec[constructor] subst x t = match arg with
 | Var v
 -> if (v = x) then t else Var v
 | App(t1, t2)
 -> App(subst (x, t, t1), subst (x, t, t2));;

Replace y by z in

\[
\begin{array}{c}
\text{x} \\
\downarrow \\
\text{y}
\end{array} \quad \begin{array}{c}
\text{x} \\
\downarrow \\
\text{z}
\end{array}
\]

to get

\[
\begin{array}{c}
\text{x} \\
\downarrow \\
\text{y}
\end{array} \quad \begin{array}{c}
\text{x} \\
\downarrow \\
\text{z}
\end{array}
\]
Substitution

```ocaml
let corec[constructor] subst x t = match arg with
  | Var v
  -> if (v = x) then t else Var v
  | App(t1, t2)
  -> App(subst (x, t, t1), subst (x, t, t2));;
```

Replace \(y \) by \(z \) in

\[
\begin{align*}
\text{Replace } y \text{ by } z \text{ in } & x \\
& \downarrow \\
& y
\end{align*}
\]

to get

\[
\begin{align*}
\text{to get } & x \\
& \downarrow \\
& z
\end{align*}
\]

We would again get 4 equations in 4 unknowns

In this case the solution is unique—the algebra is the final coalgebra

Standard semantics: not the unique solution in the final coalgebra \(C \), but the least solution in a Scott domain \(C_\bot \)
Example: Probabilistic Protocols

\[
\Pr_H(s) = \frac{1}{2} + \frac{1}{2} \cdot \Pr_H(t) \quad \Pr_H(t) = \frac{1}{2} \cdot \Pr_H(s)
\]

- Can calculate expected running times, higher moments, outcome functions similarly
- These are all least solutions in an appropriate ordered domain—in the above example, \([0, 1], \leq\)
\[E(s) = \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot (1 + E(t)) = 1 + \frac{1}{2} E(t) \]

\[E(t) = \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot (1 + E(s)) = 1 + \frac{1}{2} E(s) \]

- Least solution in \(\mathbb{R}_+ \cup \{\infty\} \) is \(E(s) = E(t) = 2 \)
- Also the unique bounded solution, because the fixpoint equation is contractive
Other Non-Well-Founded Examples

- static analysis, abstract interpretation
- p-adic arithmetic
- automata constructions
• We implemented \texttt{corec} constructor which takes a solver as a parameter

• We implemented several general solvers: least fixed point, unique solution in a final coalgebra, gaussian elimination, \ldots
• We implemented `corec` constructor which takes a solver as a parameter
• We implemented several general solvers: least fixed point, unique solution in a final coalgebra, gaussian elimination, ...
• Solvers are implemented directly in the interpreter, as transformers from an abstract syntax tree to another abstract syntax tree.
• Future: to provide tools to manipulate the abstract syntax tree allowing programmers to easily specify their solver.
Conclusions

- CoCaml offers new program constructs and functionalities to implement functions on coinductive structures.
- Examples illustrate the need for new constructs
- New constructs enable allow definitions very much in the style of standard recursive functions.
Thanks!