Pre-Galois Connection on Coalgebras for Generic Component Refinement

Sun Meng

CWI, Amsterdam, The Netherlands
http://www.cwi.nl/~sun

October 23, 2007
Component based software development as a promising paradigm to deal with the increasing complexity in software design.

Components must be specified and implemented before it can be analyzed and used.

Coalgebras can be used as a mathematical model for components.

Galois connection has been widely used to ensure the correctness of refinement relations.

Do we have a notion like Galois connections between coalgebras to witness refinement of components?
Motivation

- Component based software development as a promising paradigm to deal with the increasing complexity in software design.
- Components must be specified and implemented before it can be analyzed and used.
- **Coalgebras** can be used as a mathematical model for components.
- **Galois connection** has been widely used to ensure the correctness of refinement relations.
- Do we have a notion like Galois connections between coalgebras to witness refinement of components?
What will we show?

We will show how to...

- ... unify the behavior model and transition types into one functor over the Kleisli category for the coalgebra model of components
- ... rebuild refinement relationship between coalgebraic structures
- ... use pre-Galois connection in reasoning about refinement of components
Generic Components

Components can be specified in a generic way which means that the underlying behavior model is taken as a specification parameter, and abstracted to a monad B.

Some useful possibilities:

- **Identity**, $B = \text{Id}$, which retrieves the simple total and deterministic behavior.

- **Partiality**, $B = \text{Id} + 1$, i.e., the maybe monad, capturing the partial behavior which describes the possibility of deadlock or failure.

- **Non-determinism**, $B = \mathcal{P}$, modeling the non-deterministic branching behavior.
Generic Components

Components can be specified in a generic way which means that the underlying behavior model is taken as a specification parameter, and abstracted to a monad B.

Some useful possibilities:

- **Identity**, $B = \text{Id}$, which retrieves the simple total and deterministic behavior.
- **Partiality**, $B = \text{Id} + 1$, i.e., the maybe monad, capturing the partial behavior which describes the possibility of deadlock or failure.
- **Non-determinism**, $B = \mathcal{P}$, modeling the non-deterministic branching behavior.
Generic Components

The type of state transitions of the component is described by a functor T. For example, if we take I and O be sets acting as component input and output interfaces, then T can be defined as the \textbf{Set} endofunctor

$$T = (\text{Id} \times O)'$$

A state-based component can be modeled as a pointed coalgebra $(u \in U, \alpha : U \rightarrow BTU)$ in \textbf{Set} with

- B a monad,
- T a functor,
- a distributive law $TB \Rightarrow BT$ implicit, that describes the way how B’s effect is distributed over the transition type represented by T,
- the point u being taken as the “initial” or “seed” state.
Generic Components

The type of state transitions of the component is described by a functor T. For example, if we take I and O be sets acting as component input and output interfaces, then T can be defined as the \textbf{Set} endofunctor

$$T = (\text{Id} \times O)^I$$

A state-based component can be modeled as a pointed coalgebra $(u \in U, \alpha : U \rightarrow BTU)$ in \textbf{Set} with

- B a monad,
- T a functor,
- a distributive law $TB \Rightarrow BT$ implicit, that describes the way how B's effect is distributed over the transition type represented by T,
- the point u being taken as the “initial” or “seed” state.
For each monad \(B \) on \(\textbf{Set} \), the Kleisli category for \(B \), denoted by \(\mathcal{K}(B) \), can be constructed as follows:

- Objects in \(\mathcal{K}(B) \) are the same as in \(\textbf{Set} \). They are just sets.
- An arrow \(U \to V \) in \(\mathcal{K}(B) \) is a function \(U \to BV \) in \(\textbf{Set} \).
- Composition of arrows in \(\mathcal{K}(B) \) is defined using multiplication \(\mu_U : BBU \to BU \).
- Identity arrow \(\text{id} : U \to U \) in \(\mathcal{K}(B) \) is the unit \(\eta_U : U \to BU \) in \(\textbf{Set} \).

The functor \(T \) can be lifted to a functor \(\mathcal{K}(T) \) on the Kleisli category \(\mathcal{K}(B) \) via the distributive law.

Considering the component model, a component is just a pointed coalgebra \((u \in U, \alpha : U \to \mathcal{K}(T)U) \) in the Kleisli category \(\mathcal{K}(B) \).
Kleisli Category

For each monad B on \mathbf{Set}, the Kleisli category for B, denoted by $\mathcal{K}(B)$, can be constructed as follows:

- Objects in $\mathcal{K}(B)$ are the same as in \mathbf{Set}. They are just sets.
- An arrow $U \rightarrow V$ in $\mathcal{K}(B)$ is a function $U \rightarrow BV$ in \mathbf{Set}.
- Composition of arrows in $\mathcal{K}(B)$ is defined using multiplication $\mu_U : BBU \rightarrow BU$.
- Identity arrow $id : U \rightarrow U$ in $\mathcal{K}(B)$ is the unit $\eta_U : U \rightarrow BU$ in \mathbf{Set}.

The functor T can be lifted to a functor $\mathcal{K}(T)$ on the Kleisli category $\mathcal{K}(B)$ via the distributive law.

Considering the component model, a component is just a pointed coalgebra $(u \in U, \alpha : U \rightarrow \mathcal{K}(T)U)$ in the Kleisli category $\mathcal{K}(B)$.
Kleisli Category

For each monad B on \textbf{Set}, the Kleisli category for B, denoted by $\mathcal{K}(B)$, can be constructed as follows:

- Objects in $\mathcal{K}(B)$ are the same as in \textbf{Set}. They are just sets.
- An arrow $U \to V$ in $\mathcal{K}(B)$ is a function $U \to BV$ in \textbf{Set}.
- Composition of arrows in $\mathcal{K}(B)$ is defined using multiplication $\mu_U : BBU \to BU$.
- Identity arrow $\text{id} : U \to U$ in $\mathcal{K}(B)$ is the unit $\eta_U : U \to BU$ in \textbf{Set}.

The functor T can be lifted to a functor $\mathcal{K}(T)$ on the Kleisli category $\mathcal{K}(B)$ via the distributive law.

Considering the component model, a component is just a pointed coalgebra $(u \in U, \alpha : U \to \mathcal{K}(T)U)$ in the Kleisli category $\mathcal{K}(B)$.
Order

- For a Kleisli category $\mathcal{K}(B)$ and any functor T, an order $\leq_{\mathcal{K}(T)}$ on $\mathcal{K}(T)$ is defined as a collection of preorders $\leq_{BTU} \subseteq BTU \times BTU$, for each set U, such that the following diagram commutes:

\[
\begin{array}{c}
\text{PreOrd} \\
\downarrow \\
\mathcal{K}(B) \xrightarrow{\leq_{\mathcal{K}(T)}} \mathcal{K}(B)
\end{array}
\quad \downarrow
\quad \begin{array}{c}
(\mathcal{K}(T), \leq_{\mathcal{K}(T)}) \\
\downarrow
\end{array}
\quad \begin{array}{c}
U \quad \quad \rightarrow
\end{array}
\quad \begin{array}{c}
BTU
\end{array}
\]

- and for any $f : U \rightarrow V$, $\mathcal{K}(T)f$ preserves the order, i.e.,

\[u_1 \leq_U u_2 \Rightarrow \mathcal{K}(T)f(u_1) \leq_{BV} \mathcal{K}(T)f(u_2) \]
For a Kleisli category $\mathcal{K}(B)$ and any functor T, an order $\leq_{\mathcal{K}(T)}$ on $\mathcal{K}(T)$ is defined as a collection of preorders $\leq_{BTU} \subseteq BTU \times BTU$, for each set U, such that the following diagram commutes:

and for any $f : U \rightarrow V$, $\mathcal{K}(T)f$ preserves the order, i.e.,

$$u_1 \leq_U u_2 \Rightarrow \mathcal{K}(T)f(u_1) \leq_{BTV} \mathcal{K}(T)f(u_2)$$
Some Possible Examples

- The first example is:

 \[x \subseteq_{\text{Id}} y \iff x = y \]

 \[x \subseteq_{\mathcal{P}} y \iff \forall e \in x \exists e' \in y . e \subseteq_{\text{Id}} e' \]

 The order \(\subseteq_{\mathcal{P}} \) captures the classical notion of nondeterministic reduction and can be turned into more specific cases. For example, the failure forcing variant \(\subseteq_{\mathcal{P}}^{E} \), where \(E \) stands for emptyset, guarantees that the first component fails no more than the second one. It is defined by replacing the clause for \(\subseteq_{\mathcal{P}} \) by

 \[x \subseteq_{\mathcal{P}}^{E} y \iff (x = \emptyset \Rightarrow y = \emptyset) \land \forall e \in x \exists e' \in y . e \subseteq_{\text{Id}} e' \]

- Consider the partiality monad \(B = \text{Id} + 1 \). The set \(BU \) carries the familiar “flat” order:

 \[x \subseteq_{B} y \iff x \neq \ast \Rightarrow x = y \land x = \ast \Rightarrow y = \ast \]
Forward and Backward Morphisms

- A possible (and intuitive) way of considering component p as a refinement of another component q is to consider that p-transitions are simply preserved in q. For example, for non-deterministic components this means set inclusion.

- Homomorphism can be used to relate two coalgebras.

\[
\begin{align*}
U & \xrightarrow{\alpha} \mathcal{K}(T)U \\
h & \downarrow \quad \downarrow \mathcal{K}(T)h \\
V & \xrightarrow{\beta} \mathcal{K}(T)V
\end{align*}
\]

- From homomorphisms we can only derive bisimulations!
- To build a witness for refinement relations, we separate the preservation and reflection aspects in homomorphism.
A possible (and intuitive) way of considering component p as a refinement of another component q is to consider that p-transitions are simply preserved in q. For example, for non-deterministic components this means set inclusion.

Homomorphism can be used to relate two coalgebras.

From homomorphisms we can only derive bisimulations!

To build a witness for refinement relations, we separate the preservation and reflection aspects in homomorphism.
Forward and Backward Morphisms

- A possible (and intuitive) way of considering component p as a refinement of another component q is to consider that p-transitions are simply preserved in q. For example, for non-deterministic components this means set inclusion.

- Homomorphism can be used to relate two coalgebras.

\[
\begin{array}{ccc}
U & \overset{\alpha}{\rightarrow} & \mathcal{K}(T)U \\
h & \downarrow & \downarrow \mathcal{K}(T)h \\
V & \overset{\beta}{\rightarrow} & \mathcal{K}(T)V
\end{array}
\]

- From homomorphisms we can only derive bisimulations!

- To build a witness for refinement relations, we separate the preservation and reflection aspects in homomorphism.
Forward and Backward Morphisms

- A possible (and intuitive) way of considering component p as a refinement of another component q is to consider that p-transitions are simply preserved in q. For example, for non-deterministic components this means set inclusion.
- Homomorphism can be used to relate two coalgebras.

\[
\begin{align*}
U \xrightarrow{\alpha} & \mathcal{K}(T)U \\
\downarrow h & \quad \downarrow \mathcal{K}(T)h \\
V \xrightarrow{\beta} & \mathcal{K}(T)V
\end{align*}
\]

- From homomorphisms we can only derive bisimulations!
- To build a witness for refinement relations, we separate the preservation and reflection aspects in homomorphism.
Forward and Backward Morphisms

For a Kleisli category $\mathcal{K}(B)$ and two coalgebras $p = (U, \alpha : U \to \mathcal{K}(T)U)$ and $q = (V, \beta : V \to \mathcal{K}(T)V)$. A forward morphism $h : p \to q$ with respect to an order \leq on $\mathcal{K}(T)$ is an arrow $h : U \to V$ such that

$$\mathcal{K}(T)h \cdot \alpha \leq \beta \cdot h$$

Dually, h is called a backward morphism if the following conditions are satisfied:

$$\beta \cdot h \leq \mathcal{K}(T)h \cdot \alpha$$
Component Refinement

The existence of a forward (backward) morphism connecting two components \(p \) and \(q \) witnesses a refinement situation whose symmetric closure coincides, as expected, with bisimulation.

Component \(p \) is a behavior refinement of \(q \), written \(p \sqsubseteq_B q \), if there exist components \(r \) and \(s \) such that \(p \sim r \), \(q \sim s \) and a (seed preserving) forward morphism from \(r \) to \(s \).

A forward morphism is a “behavior preserving” mapping, but lying inside it is a more fundamental concept: to relate two coalgebras, one must show that all the transitions in one coalgebra are “mimicked” by the other. Such an intuition is formalized by the notion of \textit{simulation}.
Component Refinement

The existence of a forward (backward) morphism connecting two components p and q witnesses a refinement situation whose symmetric closure coincides, as expected, with bisimulation.

Component p is a behavior refinement of q, written $p \sqsubseteq_B q$, if there exist components r and s such that $p \sim r$, $q \sim s$ and a (seed preserving) forward morphism from r to s.

A forward morphism is a “behavior preserving” mapping, but lying inside it is a more fundamental concept: to relate two coalgebras, one must show that all the transitions in one coalgebra are “mimicked” by the other. Such an intuition is formalized by the notion of simulation.
Component Refinement

The existence of a forward (backward) morphism connecting two components p and q witnesses a refinement situation whose symmetric closure coincides, as expected, with bisimuation.

Component p is a behavior refinement of q, written $p \sqsubseteq_B q$, if there exist components r and s such that $p \sim r$, $q \sim s$ and a (seed preserving) forward morphism from r to s.

A forward morphism is a “behavior preserving” mapping, but lying inside it is a more fundamental concept: to relate two coalgebras, one must show that all the transitions in one coalgebra are “mimicked” by the other. Such an intuition is formalized by the notion of simulation.
Simulation

- For a given Kleisli category $K(B)$, a functor T and a refinement preorder \leq, a lax relation lifting is an operation $\text{Rel}_{\leq}(K(T))$ mapping relation R to $\leq \cdot \text{Rel}(K(T))(R) \cdot \leq$, where $\text{Rel}(K(T))(R)$ is the lifting of R to $K(T)$ defined, as usual, as the $K(T)$-image of inclusion.

- Given coalgebras (U, α) and (V, β), a simulation is a $\text{Rel}_{\leq}(K(T))$-coalgebra over α and β, i.e., a relation R such that, for all $u \in U$, $v \in V$,

$$\quad (u, v) \in R \implies (\alpha u, \beta v) \in \text{Rel}_{\leq}(K(T))(R)$$

Diagram:

\[
\begin{array}{ccc}
U & \xleftarrow{\pi_1} & R & \xrightarrow{\pi_2} & V \\
\alpha \downarrow & & \downarrow & & \beta \\
\mathcal{K}(T)U & \xleftarrow{\mathcal{K}(T)\pi_1} & \text{Rel}(\mathcal{K}(T))(R) & \xrightarrow{\mathcal{K}(T)\pi_2} & \mathcal{K}(T)V
\end{array}
\]
Soundness and Completeness Results

For two coalgebras p and q,

Theorem (soundness)

To prove $p \sqsubseteq_B q$ it is sufficient to exhibit a simulation R relating p and q.

Theorem (completeness)

If $p \sqsubseteq_B q$ and h is the witness forward morphism, then $\sim \cdot \text{Graph}(h) \cdot \sim$ is a simulation between p and q.
Soundness and Completeness Results

For two coalgebras p and q,

Theorem (soundness)

To prove $p \sqsubseteq_B q$ it is sufficient to exhibit a simulation R relating p and $q.

Theorem (completeness)

If $p \sqsubseteq_B q$ and h is the witness forward morphism, then $\sim \cdot \text{Graph}(h) \cdot \sim$ is a simulation between p and $q.

Soundness and Completeness Results

For two coalgebras p and q,

Theorem (soundness)

To prove $p \sqsubseteq_B q$ it is sufficient to exhibit a simulation R relating p and q.

Theorem (completeness)

If $p \sqsubseteq_B q$ and h is the witness forward morphism, then $\sim \cdot \text{Graph}(h) \cdot \sim$ is a simulation between p and q.
Pre-Galois Connection

For a Kleisli category $\mathcal{K}(B)$ and functor T, let \leq be an order on $\mathcal{K}(T)$, a pre-Galois connection between two $\mathcal{K}(T)$-coalgebras (U, α) and (V, β) is a pair of arrows $f : U \to V$ and $g : V \to U$, such that for all $u \in U$ and $v \in V,$

$$\alpha(u) \leq_{\mathcal{K}(T)U} \mathcal{K}(T)g \cdot \beta(v) \text{ iff } \mathcal{K}(T)f \cdot \alpha(u) \leq_{\mathcal{K}(T)V} \beta(v)$$

We say that f is the lower adjoint and g is the upper adjoint of the pre-Galois connection.
Composition and Identity for Pre-Galois Connections

If \((f, g)\) is a pre-Galois connection between two coalgebras \((U, \alpha : U \to \mathbb{H}(T)U)\) and \((V, \beta : V \to \mathbb{H}(T)V)\), and \((h, k)\) is a pre-Galois connection between two coalgebras \((V, \beta : V \to \mathbb{H}(T)V)\) and \((W, \gamma : W \to \mathbb{H}(T)W)\), then \((h \cdot f, g \cdot k)\) is a pre-Galois connection between \((U, \alpha : U \to \mathbb{H}(T)U)\) and \((W, \gamma : W \to \mathbb{H}(T)W)\).

\((\text{id}, \text{id})\) where \text{id} denotes the identity function on \(U\) is a pre-Galois connection between a coalgebra \((U, \alpha : U \to \mathbb{H}(T)U)\) and itself.
Composition and Identity for Pre-Galois Connections

- If \((f, g)\) is a pre-Galois connection between two coalgebras \((U, \alpha : U \to \mathcal{K}(T)U)\) and \((V, \beta : V \to \mathcal{K}(T)V)\), and \((h, k)\) is a pre-Galois connection between two coalgebras \((V, \beta : V \to \mathcal{K}(T)V)\) and \((W, \gamma : W \to \mathcal{K}(T)W)\), then \((h \cdot f, g \cdot k)\) is a pre-Galois connection between \((U, \alpha : U \to \mathcal{K}(T)U)\) and \((W, \gamma : W \to \mathcal{K}(T)W)\).

- \((\text{id}, \text{id})\) where \text{id} denotes the identity function on \(U\) is a pre-Galois connection between a coalgebra \((U, \alpha : U \to \mathcal{K}(T)U)\) and itself.
Cancellation

If we introduce an order \preceq_U on U for $(U, \alpha : U \to \mathcal{K}(T)U)$ as $u \preceq_U u'$ iff $\alpha(u) \preceq_{\mathcal{K}(T)U} \alpha(u')$, i.e., we assume that \preceq reflects the transition structure \to. In other words, the functor $\mathcal{K}(T)$ is order-preserving, then

Lemma (Cancellation)

If (f, g) is a pre-Galois connection between two coalgebras $(U, \alpha : U \to \mathcal{K}(T)U)$ and $(V, \beta : V \to \mathcal{K}(T)V)$, then we have

\[f \cdot g \preceq_V \text{id}_V \text{ and } \text{id}_U \preceq_U g \cdot f \]

and

Lemma

If (f, g) is a pre-Galois connection between two coalgebras $(U, \alpha : U \to \mathcal{K}(T)U)$ and $(V, \beta : V \to \mathcal{K}(T)V)$, then f and g are both monotonic with respect to \preceq_U and \preceq_V.
Cancellation

If we introduce an order \(\prec_U \) on \(U \) for \((U, \alpha : U \to \mathcal{H}(T)U)\) as \(u \prec_U u' \) iff \(\alpha(u) \leq \mathcal{H}(T) \alpha(u') \), i.e., we assume that \(\prec \) reflects the transition structure \(\to \). In other words, the functor \(\mathcal{H}(T) \) is order-preserving, then

Lemma (Cancellation)

If \((f, g)\) is a pre-Galois connection between two coalgebras \((U, \alpha : U \to \mathcal{H}(T)U)\) and \((V, \beta : V \to \mathcal{H}(T)V)\), then we have

\[
f \cdot g \prec_V \text{id}_V \text{ and } \text{id}_U \prec_U g \cdot f
\]

and

Lemma

If \((f, g)\) is a pre-Galois connection between two coalgebras \((U, \alpha : U \to \mathcal{H}(T)U)\) and \((V, \beta : V \to \mathcal{H}(T)V)\), then \(f \) and \(g \) are both monotonic with respect to \(\prec_U \) and \(\prec_V \).
Cancellation

If we introduce an order $<_U$ on U for $(U, \alpha : U \to \mathcal{K}(T)U)$ as $u<_U u'$ iff $\alpha(u) \leq \mathcal{K}(T)U \alpha(u')$, i.e., we assume that $<$ reflects the transition structure \to. In other words, the functor $\mathcal{K}(T)$ is order-preserving, then

Lemma (Cancellation)

If (f, g) is a pre-Galois connection between two coalgebras $(U, \alpha : U \to \mathcal{K}(T)U)$ and $(V, \beta : V \to \mathcal{K}(T)V)$, then we have

$$f \cdot g \leq_V \text{id}_V \text{ and } \text{id}_U \leq_U g \cdot f$$

and

Lemma

If (f, g) is a pre-Galois connection between two coalgebras $(U, \alpha : U \to \mathcal{K}(T)U)$ and $(V, \beta : V \to \mathcal{K}(T)V)$, then f and g are both monotonic with respect to $<_U$ and $<_V$.
Relationship with Galois Connection

Theorem

If \((f, g)\) is a pre-Galois connection between two coalgebras \((U, \alpha : U \to \mathcal{H}(T)U)\) and \((V, \beta : V \to \mathcal{H}(T)V)\), for the orders \(<_U\) and \(<_V\) on \(U\) and \(V\), \((f, g)\) is a Galois connection.
Theorem

If \((f, g)\) is a pre-Galois connection between two coalgebras \((U, \alpha : U \to \mathcal{H}(T)U)\) and \((V, \beta : V \to \mathcal{H}(T)V)\), then \(f \cdot g \cdot f \sim f\) and \(g \cdot f \cdot g \sim g\).
Properties for Adjoints

The adjoints in a pre-Galois connection uniquely determine each other when the order \leq is a partial order and $\mathcal{K}(T)$ is a faithful functor.

Theorem

If the order \leq is a partial order, and (f, g) and (f, h) are pre-Galois connections between two coalgebras $(U, \alpha : U \to \mathcal{K}(T)U)$ and $(V, \beta : V \to \mathcal{K}(T)V)$ where $\mathcal{K}(T)$ is faithful, then $g = h$ (similarly for the dual case).

Corollary

If \leq is a preorder, and (f, g) and (f, h) are pre-Galois connections between two coalgebras $(U, \alpha : U \to \mathcal{K}(T)U)$ and $(V, \beta : V \to \mathcal{K}(T)V)$ where $\mathcal{K}(T)$ is faithful, then $g \sim h$ (similarly for the dual case).
Properties for Adjoint

The adjoints in a pre-Galois connection uniquely determine each other when the order \leq is a partial order and $\mathcal{K}(T)$ is a faithful functor.

Theorem

If the order \leq is a partial order, and (f, g) and (f, h) are pre-Galois connections between two coalgebras $(U, \alpha : U \to \mathcal{K}(T)U)$ and $(V, \beta : V \to \mathcal{K}(T)V)$ where $\mathcal{K}(T)$ is faithful, then $g = h$ (similarly for the dual case).

Corollary

If \leq is a preorder, and (f, g) and (f, h) are pre-Galois connections between two coalgebras $(U, \alpha : U \to \mathcal{K}(T)U)$ and $(V, \beta : V \to \mathcal{K}(T)V)$ where $\mathcal{K}(T)$ is faithful, then $g \sim h$ (similarly for the dual case).
Properties for Adjoints

The adjoints in a pre-Galois connection uniquely determine each other when the order \leq is a partial order and $\mathcal{K}(T)$ is a faithful functor.

Theorem

If the order \leq is a partial order, and (f, g) and (f, h) are pre-Galois connections between two coalgebras $(U, \alpha : U \to \mathcal{K}(T)U)$ and $(V, \beta : V \to \mathcal{K}(T)V)$ where $\mathcal{K}(T)$ is faithful, then $g = h$ (similarly for the dual case).

Corollary

If \leq is a preorder, and (f, g) and (f, h) are pre-Galois connections between two coalgebras $(U, \alpha : U \to \mathcal{K}(T)U)$ and $(V, \beta : V \to \mathcal{K}(T)V)$ where $\mathcal{K}(T)$ is faithful, then $g \sim h$ (similarly for the dual case).
Properties for Adjoints

Theorem

If the order \leq is a partial order, and (f, g) is a pre-Galois connection between two coalgebras $(U, \alpha : U \to \mathcal{K}(T)U)$ and $(V, \beta : V \to \mathcal{K}(T)V)$ where $\mathcal{K}(T)$ is faithful, then

- f is monic iff g is epic iff $g \cdot f = \text{id}_U$;
- g is monic iff f is epic iff $f \cdot g = \text{id}_V$.

Corollary

If \leq is a preorder, and (f, g) is a pre-Galois connection between $(U, \alpha : U \to \mathcal{K}(T)U)$ and $(V, \beta : V \to \mathcal{K}(T)V)$ where $\mathcal{K}(T)$ is faithful, then

- $f \, (g)$ is monic \Rightarrow $g \cdot f \sim \text{id}_U$ ($f \cdot g \sim \text{id}_V$);
- $f \, (g)$ is epic \Rightarrow $f \cdot g \sim \text{id}_V$ ($g \cdot f \sim \text{id}_U$).
Properties for Adjoint Properties

Theorem

If the order \(\leq \) is a partial order, and \((f, g)\) is a pre-Galois connection between two coalgebras \((U, \alpha : U \to \mathcal{K}(T)U)\) and \((V, \beta : V \to \mathcal{K}(T)V)\) where \(\mathcal{K}(T)\) is faithful, then

- \(f\) is monic iff \(g\) is epic iff \(g \cdot f = \text{id}_U\);
- \(g\) is monic iff \(f\) is epic iff \(f \cdot g = \text{id}_V\).

Corollary

If \(\leq\) is a preorder, and \((f, g)\) is a pre-Galois connection between \((U, \alpha : U \to \mathcal{K}(T)U)\) and \((V, \beta : V \to \mathcal{K}(T)V)\) where \(\mathcal{K}(T)\) is faithful, then

- \(f (g)\) is monic \(\Rightarrow g \cdot f \sim \text{id}_U\) \((f \cdot g \sim \text{id}_V)\);
- \(f (g)\) is epic \(\Rightarrow f \cdot g \sim \text{id}_V\) \((g \cdot f \sim \text{id}_U)\).
Given a pre-Galois connection \((f : U \rightarrow V, g : V \rightarrow U)\), we can extract the relation \(R_{(f,g)} \subseteq U \times V\) as follows:

\[
R_{(f,g)} = \{(u, v) \mid \mathcal{K}(T)f \cdot \alpha(u) \leq \mathcal{K}(T)V \beta(v)\}
\]

or equivalently

\[
R_{(f,g)} = \{(u, v) \mid \alpha(u) \leq \mathcal{K}(T)U \mathcal{K}(T)g \cdot \beta(v)\}
\]

Theorem

The relation \(R_{(f,g)}\) is a simulation.

Corollary

If the preorder \(\leq\) be equality =, then \(R_{(f,g)}\) is a bisimulation.
Linking Pre-Galois Connection with Refinement

Given a pre-Galois connection \((f : U \to V, g : V \to U)\), we can extract the relation \(R_{(f,g)} \subseteq U \times V\) as follows:

\[
R_{(f,g)} = \{(u, v) \mid \mathcal{K}(T)f \cdot \alpha(u) \leq \mathcal{K}(T)V \beta(v)\}
\]

or equivalently

\[
R_{(f,g)} = \{(u, v) \mid \alpha(u) \leq \mathcal{K}(T)U \mathcal{K}(T)g \cdot \beta(v)\}
\]

Theorem

The relation \(R_{(f,g)}\) is a simulation.

Corollary

If the preorder \(\leq\) be equality \(=\), then \(R_{(f,g)}\) is a bisimulation.
Linking Pre-Galois Connection with Refinement

Given a pre-Galois connection \((f : U \to V, g : V \to U)\), we can extract the relation \(R_{(f,g)} \subseteq U \times V\) as follows:

\[
R_{(f,g)} = \{(u, v) \mid \mathcal{K}(T)f \cdot \alpha(u) \leq \mathcal{K}(T)V \beta(v)\}
\]

or equivalently

\[
R_{(f,g)} = \{(u, v) \mid \alpha(u) \leq \mathcal{K}(T)U \mathcal{K}(T)g \cdot \beta(v)\}
\]

Theorem

The relation \(R_{(f,g)}\) is a simulation.

Corollary

If the preorder \(\leq\) be equality \(=\), then \(R_{(f,g)}\) is a bisimulation.
Conclusions

- The coalgebraic model for state based components is rebuilt in the Kleisli category.
- The refinement theory for generic state-based components is re-examined for coalgebras in the Kleisli category.
- The notion of pre-Galois connection is defined and some properties are proved.
Future work

- Go deeper into the concept itself
 - Existence of the adjoints in a pre-Galois connection
 - Completeness of pre-Galois connection for refinement
- Application of pre-Galois connection in refinement examples
Thank you!